Preparation and Structural and Magnetic Properties of $AgF^+MF_6^-$ (M = Ir, Ru, Sb, Bi) and $Ag^{2+}(BiF_6^-)_2^{\dagger}$

G. Lucier, J. Münzenberg, W. J. Casteel, Jr., and N. Bartlett*

Chemical Sciences Division, Lawrence Berkeley Laboratory, and Department of Chemistry, University of California, Berkeley, California 94720

Received September 20, 1994[®]

AgFMF₆ salts (M = Ir, Ru, Sb, Bi) have been prepared by the action of elemental F_2 in AHF on AgMF₆, and for AgFBiF₆, also by interaction of $Ag(BiF_6)_2$ with KBF_4 or KPF_6 in AHF. Three structure types have been identified. AgFIrF₆ {orthorhombic *Pnma*, a = 7.628(2) Å, b = 7.067(2) Å, c = 10.253(4) Å, V = 552.7(3) Å³, and Z = 4, with R = 0.026 and $R_w = 0.030$ for 531 observed reflections and 50 parameters refined by full-matrix least squares, Mo K α radiation at 298 K} is isostructural with AgFAsF₆ and AgFAuF₆, the one dimensional cation $(Ag-F)_n^{n+}$, showing Ag(II) linearly coordinated to two F ligands with Ag-F = 1.977(9) and 2.014(9) Å and $Ag-F-Ag = 146.0(5)^{\circ}$. In $AgFRuF_6$ {monoclinic $P2_1/n$, a = 8.3432(13) Å, b = 5.4933(8) Å, c = 11.9286(22)Å, $\beta = 108.36(1)^\circ$, V = 518.9(3) Å³, and Z = 4, with R = 0.027 and $R_w = 0.028$ for 1511 observed reflections and 83 parameters refined by full matrix least squares, Mo K α radiation at 298 K} the Ag(II) is nearly square coordinated by four F; two *cis* F, each shared nearly equally with another Ag(II) {Ag-F = 2.007(3) and 2.018(2)Å, $Ag-F-Ag = 155.9(2)^{\circ}$ give the cation a ribbonlike polymeric character. The other two F ligands of the square array {Ag-F = 2.140(3) and 2.158(3) Å} are each associated with a different RuF₆⁻, each of which is so linked to two Ag(II) moieties. AgFMF₆ (M = Sb, Bi) belong to a third structure type. The cation chains of the $AgF^+MF_6^-$ salts have approximate temperature independence of magnetic susceptibility, akin to that of metallic systems. In contrast, Ag(BiF₆)₂ {triclinic $P\overline{1}$, a = 5.218(2) Å, b = 5.579(1) Å, c = 8.934(2) Å, $\alpha = 76.08(2)^{\circ}$, $\beta = 88.93(2)^\circ$, $\gamma = 65.08(2)^\circ$, V = 228.0(1) Å³, and Z = 1, with R = 0.055 and $R_w = 0.067$ for 1327 observed reflections and 41 parameters refined by full-matrix least squares, Mo Ka radiation at 298 K}, which is isostructural with Ag(SbF₆)₂, shows approximate obedience to the Curie-Weiss law. AgRuF₆BiF₆ appears to be similar. In the structure of Ag(BiF₆)₂, each Ag(II) is linked in nearly square array to four F ligands of four surrounding BiF₆⁻ ions {Ag-F = 2.096(9) Å × 2 and 2.122(9) Å × 2}, two other anions making contact normal to that plane, with Ag---F = 2.440(10) Å.

Introduction

The Ag(II) salts AgFAsF₆ and Ag(SbF₆)₂ were first prepared by Frlec and Holloway and their co-workers,^{1,2} each salt being structurally characterized by them.^{2,3} In addition, Müller, has prepared⁴ and structurally characterized, Ag(MF₆)₂ (M = Nb, Ta) which are structural relatives of Ag(SbF₆)₂.

In the course of investigations of the chemistry of AgF₃, it was discovered in these laboratories⁵ that the trifluoride interacted with AsF₅, at ~20 °C, in liquid anhydrous hydrogen fluoride (AHF) to liberate F₂ and yield AgFAsF₆ (AgF₃ + AsF₅ \rightarrow AgFAsF₆ + $1/_2$ F₂). In searching for evidence of an intermediate Ag(III) solution species in that reaction, it was found that cationic Ag(II) in AHF (Ag²⁺(solv)) was a sufficiently powerful oxidizer to oxidize xenon at room temperatures. The cation AgF⁺ has also been shown to be a strong oxidizer⁶ but less potent than Ag²⁺(solv) which will also oxidize O₂ to O₂⁺ at -78 °C.

- * Abstract published in Advance ACS Abstracts, April 1, 1995.
 (1) Frlec, B.; Gantar, D.; Holloway, J. H. J. Fluorine Chem. 1982, 20, 385.
- (2) Gantar, D.; Leban, I.; Frlec, B.; Holloway, J. H. J. Chem. Soc., Dalton Trans. 1987, 2379.
- (3) Gantar, D.; Frlec, B.; Russell, D. R.; Holloway, J. H. Acta Crystallogr. 1987, C43, 618.
- (4) Müller, B. G. Angew. Chem. 1987, 99, 685.
- (5) Žemva, B.; Hagiwara, R.; Casteel, W. J., Jr.; Lutar, K.; Jesih, A.; Bartlett, N. J. Am. Chem. Soc. 1990, 112, 4846.
- (6) Lucier, G.; Shen, C.; Casteel, W. J., Jr.; Chacón, L.; Bartlett, N. J. Fluorine Chem., in press.

A number of Ag(II) fluoroanion salts have been investigated as part of a systematic investigation of the oxidizing properties of Ag(II) in AHF, and previous papers⁵⁻⁸ describe some of that work. In this report synthetic approaches are given for the synthesis of novel AgFMF₆ salts (M = Ir, Ru, Sb, Bi) and three structure types are identified. The AgF⁺ in these salts are all associated with a weak paramagnetism that is approximately temperature-independent from ~50 K up. This contrasts with the magnetic behavior of Ag(II) in Ag(BiF₆)₂ and AgRuF₆BiF₆ which approximately obey the Curie-Weiss law. In the Ag-(MF₆)₂ compounds, the structural evidence indicates that the Ag(II) species are consistent with Ag²⁺ in a tetragonally elongated octahedral environment. Reasons for the structural variety in the AgFMF₆ salts and their magnetic properties are discussed.

Results and Discussion

The ability of $Ag^{2+}(solv)$ to oxidize^{5,6} Xe or O₂ in AHF demonstrates that even the HF- solvated Ag^{2+} must possess a high effective nuclear charge at the metal center. It was expected then that the Ag^{2+} in salts would exert high polarizing power and only be sustainable by anions of great stability with respect either to anionic ligand loss (e.g. F⁻) or electron transfer.

From conductivity measurements on EF₅/HSO₃F/SO₃ systems, Gillespie and his co-workers have shown⁹ that the Lewis

(9) Gillespie, R. J.; Ouchi, K.; Pez, G. P. Inorg. Chem. 1969, 8, 63.

© 1995 American Chemical Society

 $^{^{\}rm t}$ Dedicated to Professor Herbert Schumann on the occasion of his 60th birthday.

⁽⁷⁾ Žemva, B.; Lutar, K.; Jesih, A.; Casteel, W. J., Jr.; Bartlett, N. J. Chem. Soc., Chem. Commun. 1989, 6, 346.

⁽⁸⁾ Casteel, W. J., Jr.; Lucier, G.; Hagiwara, R.; Borrmann, H.; Bartlett, N. J. Solid State Chem. 1992, 96, 84.

Figure 1. Structure of Ag(BiF₆)₂, distances in Å with $\sigma = 0.01$ Å.

acid strength of the group 15 elements increases in the order $PF_5 < AsF_5 < BiF_5 < SbF_5$. This suggests that the failure to prepare Ag(AsF_6)₂ (even with removal of AHF and AsF₅ from solutions at -60 °C) is a consequence of the inadequate fluoroacidity of AsF₅. Since the F⁻ affinity of gaseous AsF₅ has been assessed¹⁰ to be at least 111 kca¹mol⁻¹, the Ag²⁺ is seen to be a very powerful fluoride ion acceptor. The structure of Ag(SbF₆)₂ by Gantar *et al.*² and those of Ag(MF₆)₂ (M = Nb and Ta)⁴ are, however, nicely explained by the formulation of Ag²⁺(MF₆⁻⁾)₂, so in those instances, the Ag²⁺ fails to abstract F⁻ from the SbF₆⁻, NbF₆⁻, or TaF₆⁻. To that set can now be added BiF₆⁻ and RuF₆⁻.

Figure 1 shows the essentials of the $Ag(BiF_6)_2$ structure. X-ray powder photographs of this compound had already indicated that it was of the same structure type as $Ag(SbF_6)_2$. Because of this and the less-than-optimal data associated with the need to enclose a powerfully oxidizing, large crystal in a quartz capillary, a lower precision structure was achieved. To avoid artificial anisotropy of fluorine atom positioning, deriving from absorption and capillary scattering effects, these atoms were set isotropic in the refinement. Just as in the $Ag(SbF_6)_2$ case, the Ag²⁺ occupies an elongated octahedral site at a center of symmetry, in an approximately close-packed F ligand array provided by the anions. The approximately square F ligand array {Ag-F = 2.096(9) Å \times 2 and 2.122(9) Å \times 2} about the Ag²⁺ is not significantly different from that found for Ag- $(SbF_6)_2$, nor are the two long bonds {Ag-F = 2.440(10) Å} different from those in $Ag(SbF_6)_2$. The BiF_6^- anions like² the SbF_6^- are much distorted by their interaction with the cation. The F ligands of the anion, which make close approach to the cation, are elongated by more than 0.1 Å, relative to those anionic ligands which have no contact with the cation (see Table 1). This and the other departures from O_h symmetry of the anion, point to the strong polarizing influence of the cation. The magnetic susceptibility of Ag(BiF₆)₂ obeys the Curie-Weiss law over the temperature range 35-280 K (see Figure 2) and has a room temperature moment, $\mu_{eff} = 2.1 \ \mu_{B}$, in agreement with the structural arrangement, in which discrete Ag(II) species of d⁹ configuration are separated by closed-shell BiF₆⁻ species.

In an experiment designed to check that $Ag^{2+}(solv)$ in AHF was incapable of oxidizing RuF_6^- to RuF_6 {in contrast to cationic Ag(III) which has that capability⁶}, ARuF₆ (A = Li or K) dissolved in AHF was added to a solution of Ag(BiF₆)₂.

Table 1. Interatomic Distances (Å) and Angles (deg) for $Ag(BiF_{6})_2$ at 298 K

Distances					
Ag-F2	2.440(10)	Bi-F3	2.048(9)		
Ag-F3	2.096(9)	Bi-F4	1.939(10)		
Ag-F6	2.122(9)	Bi-F5	1.940(11)		
Bi-F1	1.944(10)	Bi-F6	2.046(9)		
Bi-F2	1.966(9)				
	A	1			
	Ang	gies			
F2-Ag-F2	180	F1-Bi-F6	169.0(4)		
F2-Ag-F3	86.3(3)	F2-Bi-F3	83.2(4)		
F2-Ag-F6	84.5(3)	F2-Bi-F4	92.1(4)		
F3-Ag-F3	180	F2-Bi-F5	165.3(4)		
F3-Ag-F6	89.4(3)	F2-Bi-F6	84.3(4)		
F6-Ag-F6	180	F3-Bi-F4	174.0(3)		
F1-Bi-F2	93.7(4)	F3-Bi-F5	86.2(4)		
F1-Bi-F3	85.0(4)	F3-Bi-F6	84.0(4)		
F1-Bi-F4	99.1(4)	F4-Bi-F5	97.7(4)		
F1-Bi-F5	95.5(4)	F4-Bi-F6	91.8(4)		
		F5-Bi-F6	84.6(4)		

Neutral RuF_6 was not generated but a dark green solid precipitated, which, from X-ray powder photography and gravimetry, proved to be $AgRuF_6BiF_6$:

$$Ag(BiF_6)_2 + ARuF_6 \rightarrow AgRuF_6BiF_6 + ABiF_6 \qquad (1)$$

This salt has a similar powder pattern to those of $Ag(MF_6)_2$ (M = Sb, Bi), although the slightly higher angle positions of the diffraction lines indicate a smaller unit cell. The similarity of the relative line intensities of the patterns of $AgRuF_6BiF_6$ and $Ag(BiF_6)_2$ indicate a close structural similarity, but the magnetic susceptibility dependence upon temperature was less simple for $AgRuF_6BiF_6$ than in the closed-shell anion cases (see Figure 3). The strong bridging interaction of F ligands of the d³ RuF₆⁻ with the d⁹ Ag^{2+} ion probably gives rise to a ferromagnetic super-exchange coupling via the *sigma* orbital system as discussed, for d³ with d⁵ systems, by Goodenough.¹¹ Weak coupling of this kind, with an ordered RuF₆⁻ BiF₆⁻ anion sequence would account for the field dependence of the susceptibility below 37 K, which is the Curie temperature for the material.

Although several AgFMF_x salts had been reported,^{2,5-8} those of the strong-acid anions SbF_6^- and BiF_6^- had not. Fluorination of the appropriate AgMF₆ salt in AHF has proved to be effective for the preparation of both of those salts, as well as others:

$$AgMF_6 + {}^{1}/_{2}F_2 \rightarrow AgFMF_6 (M = Sb, Bi, Ir, Au, Ru)$$
(2)

(This also proves to be a good approach for the preparation of single crystals suitable for X-ray diffraction structure determination). The AgFBiF₆ has also been made by displacement of a weak acid from its alkali salt:

$$Ag(BiF_6)_2 + KBF_4 \text{ (or KPF}_6) \rightarrow AgFBiF_6 + KBiF_6 + BF_3 \text{ (or PF}_5) (3)$$

This synthesis nicely demonstrates the loss of F^- from a weak acid anion to Ag^{2+} . It was not possible to prepare $AgFPF_6$ by fluorination of $AgPF_6$ in AHF, the product being AgF_2 and PF_5 . Here, PF_6^- is seen to be an effective F^- donor even to AgF^+ . Although the F^- affinity of $BF_3(g)$ is approximately 10 kcal·mol⁻¹ less than that of PF₅, the greater lattice energy of small-cation BF_4^- salts more than compensates for that deficiency.¹⁰ This probably accounts for the existence^{5,7} of $AgFBF_4$ and the failure to prepare $AgFPF_6$.

⁽¹⁰⁾ Mallouk, T. E.; Rosenthal, G. L.; Müller, G.; Brusasco, R.; Bartlett, N. Inorg. Chem. 1984, 23, 3167.

⁽¹¹⁾ Goodenough, J. B. Magnetism and the Chemical Bond; John Wiley and Sons: New York, 1963, p 170.

Figure 2. Curie-Weiss plot of the magnetic susceptibility of $Ag(BiF_6)_2$.

Figure 3. Magnetic susceptibility data for AgRuF₆BiF₆.

The liberation of OsF_6 on fluorination of $AgOsF_6$ showed⁶ that if the ionization potential of MF_6^- is lower than the 5.7 eV estimated¹² for OsF_6^- , transfer of the anion electron to the cation occurs. In the case of IrF_6^- , the ionization potential is ~1 eV higher than that value, and $AgF^+IrF_6^-$ is stable. The salt has the same structure^{3,8} as $AgFAsF_6$ and $AgFAuF_6$. The nature of the $(Ag-F)_n^{n+}$ one dimensional chain is not significantly different¹³ from that in $AgFAsF_6$. The important distances and angles are given in Figure 4 and Table 2.

Since the anion $\operatorname{Ru}F_6^-$ is only ~0.3 Å³ smaller¹⁴ than $\operatorname{Ir}F_6^-$, it was a surprise to find that the AgFRuF₆ structure is of a very different type. As may be seen in Figure 5 and Table 3, the Ag(II) species in this salt is approximately square-coordinated by four F ligands as in the Ag(MF₆)₂ salts. In contrast to the latter however, neighboring Ag(II) are brought into close proximity with one another by two *cis* related bridging F ligands, each nearly equidistant from two Ag(II). The nearly square F ligand array involves another two ligands, one from each of two RuF_6^- . Each RuF_6^- bridges two Ag(II), and as can be seen from Figure 5, all connected Ag(II) with their four near-neighbor F ligands lie in a common plane. The $(\text{Ag}-\text{F})_n^{n+}$ cation is therefore in this case a one-dimensional ribbon.

This ribbon cation shows a striking resemblance to the coordination of Ag(II) in AgF₂. In that structure, 15 each Ag-(II) is square-coordinated by F ligands at 2.086(5) Å, which are equidistant from the two linked Ag(II), with Ag-F-Ag =129.6(1)°. This generates a puckered sheet of stoichiometry AgF₂. These sheets can only be very weakly linked since closest intersheet Ag. . . F distances (two per silver atom, normal to the square AgF_4 unit) are 2.588(6) Å. The latter distance is similar to the long-bonded contact that the Ag(II) in AgFRuF₆ makes to the anions, with Ag···F3 = 2.548(3) Å and Ag···F4 = 2.659-(3) Å. The zigzag -Ag-F-Ag-F- chain in this salt has a shorter bridging fluorine distance than in AgF_2 , with Ag-F =2.007(3) and 2.018(2) Å and Ag-F-Ag = $155.9(2)^{\circ}$, but the form of the chain is very like a section of the puckered AgF_2 sheet, defined by tracing adjacent Ag(II) through cis F at each Ag. The short Ag-F distances between Ag(II) and the bridging RuF_6^- of AgFRuF₆, at 2.158(3) and 2.140(3) Å, complete the square coordination; the Ag-F distances therefore average to

⁽¹²⁾ Thrasher, J. S.; Strauss, S. H., Eds. Inorganic Fluorine Chemistry: Toward the 21st Century; ACS Symposium Series; American Chemical Society: Washington, DC, 1994; Chapter 2.

⁽¹³⁾ An attempt to obtain a more precise structure by collecting data at 182 K failed. This may have been a consequence of otherwise undetected lowering of symmetry on cooling the crystal but is more likely to be associated with the high background counts from the capillary.

⁽¹⁴⁾ In LiRuF₆, R_3^3 , $a_0 = 5.369(1)$ Å, $\alpha = 56.34(1)^\circ$, and V/Z = 100.2 Å³, and LiIrF₆, R_3^3 , $a_0 = 5.397(1)$ Å, $\alpha = 55.88(1)^\circ$, and V/Z = 100.5 Å³ (Botkovitz, P.; Lucier, G. Unpublished data), the Li⁺ is in an octahedral-hole site and the formula unit volume must closely represent the anion size in these A⁺MF₆⁻ salts.

⁽¹⁵⁾ Jesih, A.; Lutar, K.; Žemva, B.; Bachmann, B.; Becker, St.; Müller, B. G.; Hoppe, R. Z. Anorg. Allg. Chem. 1990, 588, 77. Note that in this paper, the orientation designation for the ORTEP is incorrect; the following transformation should be applied, where a, b, and c are the published axes and a', b', and c' are the corrected axes: $a \rightarrow -a'$, $b \rightarrow c'$, $c \rightarrow b'$.

Figure 4. Structure of AgFIrF₆, with distances in Å.

Table 2. Interatomic Distances (Å) and Angles (deg) for AgFIrF₆ at 298 K^a

Distances					
Ag-F1	1.977(9)	Ir-F2	1.886(9)		
Ag-F1 ⁱ	2.014(9)	Ir-F3	1.812(10)		
Ag-F2 ⁱ	2.467(10)	Ir-F4	1.890(7)		
Ag-F4	2.461(7)	Ir-F5	1.891(7)		
Ag-F5 ⁱⁱ	2.311(7)				
	Ang	gles			
F1-Ag-F1 ⁱ	176.1(4)	Ag-F1-Ag ^v	146.0(5)		
F1-Ag-F2i	95.6(4)	F1 ⁱ -Ag-F2 ⁱ	88.4(4)		
F1-Ag-F4	86.7(3)	F1 ⁱ -Ag-F4 ^{iv}	89.9(3)		
F1-Ag-F5 ⁱⁱ	88.1(2)	F1 ⁱ -Ag-F5 ⁱⁱ	93.0(2)		
F2-Ag-F4iv	148.3(2)	F2 ⁱ -Ag-F5 ⁱⁱ	73.3(2)		
F4-Ag-F5 ^{iv}	138.4(2)	F4 ^{iv} -Ag-F5 ⁱⁱ	· 75.2(2)		
F4-Ag-F4	63.3(2)	F5 ⁱⁱⁱ -Ag-F5 ⁱⁱ	145.8(2)		
F4-Ir-F5	92.4(3)	F4 ^{iv} -Ir-F5	177.8(3)		
F4-Ir-F4	86.2(3)	F5-Ir-F5 ^{iv}	89.0(3)		
F2-Ir-F3	179.3(5)	F3-Ir-F4	90.3(3)		
F2-Ir-F4	89.2(3)	F3-Ir-F5	91.4(3)		
F2-Ir-F5	89.1(3)	Ag ^v -F2-Ir	135.5(5)		
Ag-F4-Ir	105.1(3)	Ag ⁱⁱ -F5-Ir	147.4(4)		

^{*a*} Roman numeral labeling of fluorines corresponds to that designated³ for AgFAsF₆.

2.081 Å, a value similar to that in AgF_2 . Evidently the Ru(V) centers attract F ligands more strongly than Ag(II). Withdrawal of 2 *cis* F ligands of the AgF_4 unit, by two Ru(V), shortens the *trans* Ag-F linkages, which are more cationic than in AgF_2 itself.

The square coordination of the Ag(II) in AgFRuF₆ can be simply viewed in crystal field theory terminology as a Jahn– Teller distortion of an octahedron, elongated as a consequence of single-electron occupancy of the $d_{x^2-y^2}$ orbital and full occupancy of d_{z^2} . Similarly, the linear coordination of Ag(II) in AgFMF₆ (M = As, Ir, Au) and AgFBF₄ is attributable to the alternative d⁹ configuration orbital occupancy, in which the singly occupied orbital is d_{z^2} .

X-ray powder diffraction photographs show that the salts $AgFMF_6$ (M = Sb or Bi) are isostructural, but the structure is not known. The nearly temperature-independent magnetic susceptibility data (from 50 to 280 K), represented in Figure 6, indicate that the Ag(II) in the cations must again be strongly coupled by Ag-F-Ag-F bridge bonding as in the other AgF salts with diamagnetic anions.⁸ The coordination number of

Table 3. Interatomic Distances (Å) and Angles (deg) for AgFRuF₆ at 298 K

Distances					
Ag-F7	2.007(3)	Ru-F1	1.909(3)		
Ag-F7	2.018(2)	Ru-F2	1.895(3)		
Ag-F1	2.140(3)	Ru-F3	1.853(3)		
Ag-F2	2.158(3)	Ru-F4	1.832(3)		
Ag-F3	2.548(3)	Ru-F5	1.818(3)		
Ag-F4	2.659(3)	Ru-F6	1.812(3)		
Ag-F5	3.068(3)				
	Ang	les			
F7-Ag-F7	88.64(3)	F1-Ru-F3	89.31(12)		
F7-Ag-F1	176.21(11)	F1-Ru-F4	88.71(12)		
F7-Ag-F1	90.82(11)	F1-Ru-F5	89.41(13)		
F7-Ag-F2	90.65(11)	F1-Ru-F6	178.45(15)		
F7-Ag-F2	171.68(12)	F2-Ru-F3	88.81(12)		
F1-Ag-F2	89.34(11)	F2-Ru-F4	88.71(13)		
F3-Ag-F1	85.29(10)	F2-Ru-F5	177.39(13)		
F3-Ag-F2	83.04(10)	F2-Ru-F6	90.28(14)		
F3-Ag-F7	90.95(11)	F3-Ru-F4	176.87(13)		
F3-Ag-F7	88.68(11)	F3-Ru-F5	90.18(13)		
F3-Ag-F4	143.93(9)	F3-Ru-F6	90.71(13)		
F3-Ag-F5	158.98(8)	F4-Ru-F5	92.22(14)		
F5-Ag-F7	70.39(10)	F4-Ru-F6	91.21(13)		
F5-Ag-F7	81.50(10)	F5-Ru-F6	92.14(15)		
F4-Ag-F1	75.39(10)	Ru-F1-Ag	139.11(14)		
F4-Ag-F2	66.84(10)	Ru-F2-Ag	138.65(14)		
F4-Ag-F5	55.15(8)	Ru-F3-Ag	128.92(13)		
Ag-F7-Ag	155.90(16)	Ru-F4-Ag	164.54(16)		
F1-Ru-F2	88.17(13)	Ru-F5-Ag	134.45(15)		

the Ag(II) is not known in the AgFMF₆ (M = Sb or Bi). The magnetic data for AgFRuF₆ and AgRuF₆, shown in Figure 7, also indicate that the magnetic susceptibility of the AgF cation in AgFRuF₆ is also small and approximately temperature-independent. Thus the change from two coordination (linear) to square coordination does not appear to have a major impact on the magnetic properties.

The explanation for the two coordination of Ag(II) in AgFMF₆ (M = As, Ir, Au) and AgFBF₄ and for the four coordination in AgFRuF₆ is uncertain. Two coordination may be associated with larger negative charge on the F ligands of the anion, four coordination being adopted when that charge falls below a critical level. Certainly, that F ligand charge in the BF₄⁻ (BF₃ is a relatively weak fluoride ion acceptor¹⁰) must be greater than in any of the MF₆⁻ considered here (if for no

Figure 5. Structure of AgFRuF₆.

Figure 6. Magnetic susceptibility of AgFMF₆ (M = Bi, Ir, and As) which shows temperature-independence above \sim 50 K.

other reason, than that there are only four F ligands for unit negative charge of the BF₄⁻). The Ag(II) in⁸ AgFBF₄ must therefore have four rather negative F ligands in the *xy* plane {at 2.330(2) Å} as well as the two linearly coordinated F atoms at 2.002(3) and 2.009(3) Å on *z*.

If the four coordination of Ag(II) in $AgFRuF_6$ is a consequence of low F ligand charge in the anion, the same would be expected for $AgFMF_6$ (M = Sb or Bi). Perhaps in those cases the anionic F ligands of the AgF_4 unit are placed *trans* rather than *cis* as in $AgFRuF_6$. If so, this would account for the third structure type.

Experimental Section

Apparatus and Technique. A metal vacuum line, fluorine handling equipment, and valves were as previously described.¹⁶ In the experimental work involving anhydrous HF (AHF), the apparatus was constructed from FEP tubing (CHEMPLAST, Inc., Wayne, NJ 07480). The commonly used reactor was constructed from a ${}^{3}/{8}$ in. o.d. FEP tube sealed at one end and with a Teflon valve (previously described⁵) at the other, a similar tube being joined mid-way by a Teflon Swagelok T compression fitting. This entire T-shaped assembly was connected to the gas handling and vacuum system via ~ 1 ft length of ${}^{1}/{4}$ in. o.d. FEP tubing. This facilitated the decanting of the AHF solutions from one tube to that at right angles to it, in the T-assembly. The T-reactors were passivated with ~ 2 atm F₂ for several hours, then evacuated before use. All solid starting materials and products were handled in the dry argon atmosphere of a Vacuum Atmospheres DRILAB. X-ray powder photographs and IR and Raman spectra were obtained as previously described.¹⁶ Magnetic measurements were performed as previously described.⁸

Materials. Anhydrous HF (AHF) (Matheson) was condensed from the cylinder into a reservoir FEP tube containing K_2NiF_6 (Ozark-Mahoning Pennwalt, Tulsa, OK) in order to destroy trace quantities of water. AgF (Ozark-Mahoning Pennwalt, Tulsa, OK) and BiF₅ were crystallized from AHF solution prior to use. The pentafluorides of Ru and Ir were prepared by heating the metals in F₂ (5–10 atm, 20 °C) to 300 °C in a nickel can with a Teflon gasket (water-cooled) and a SS-KS4 Whitey valve. BF₃ (Matheson, Newark, CA), PF₅, and AsF₅

⁽¹⁶⁾ Lutar, K.; Jesih, A.; Leban, I.; Žemva, B.; Bartlett, N. Inorg. Chem. 1989, 28, 3467.

Figure 7. Curie–Weiss plot of the magnetic susceptibility of AgFRuF₆ { μ (5 kG) = 3.98, μ (40 kG) = 3.87} and AgRuF₆ { μ (5 kG) = 3.91, μ (40 kG) = 3.81}.

Table 4. Atomic Coordinates for Ag(BiF₆)₂ at 298 K

	x	у	z	B_{eq} , ^{<i>a</i>} Å ²
Ag	0.5	0.5	0.5	1.44(2)
Bi	0.72610(7)	0.01872(7)	0.22639(1)	1.401(8)
F1	0.682(2)	-0.236(2)	0.126(1)	2.9(2)
F2	0.134(2)	-0.211(1)	0.286(1)	2.5(1)
F3	0.684(2)	-0.227(1)	0.427(1)	2.3(1)
F4	0.800(2)	0.250(2)	0.048(1)	2.7(1)
F5	0.323(2)	0.245(2)	0.223(1)	3.0(2)
F6	0.771(2)	0.237(1)	0.370(1)	2.3(1)

^a $B_{eq} = (4/3)[a^2\beta(1,1) + b^2\beta(2,2) + c^2\beta(3,3) + ab(\cos \gamma)\beta(1,2) + ac(\cos \beta)\beta(1,3) + bc(\cos \alpha)\beta(2,3)]$ where a, b, and c are real cell parameters and $\beta(i,j)$ are anisotropic β 's.

Table 5. Atomic Coordinates for $AgFIrF_6$ at 298 K

	x	у	z	B_{eq} , ^{<i>a</i>} Å ²
Ag	0.1368(1)	0.25	0.2431(1)	1.26(2)
Г	0.29858(8)	0.25	0.55958(1)	1.49(1)
F1	0.387(1)	0.25	0.1931(9)	2.5(2)
F2	0.523(1)	0.25	0.4821(9)	3.0(2)
F3	0.082(1)	0.25	0.632(1)	4.2(3)
F4	0.2256(9)	0.433(1)	0.4364(6)	2.9(1)
F5	0.3766(9)	0.063(1)	0.6776(6)	3.0(1)

^a $B_{eq} = (4/3)[a^2\beta(1,1) + b^2\beta(2,2) + c^2\beta(3,3) + ab(\cos \gamma)\beta(1,2) + ac(\cos \beta)\beta(1,3) + bc(\cos \alpha)\beta(2,3)]$ where a, b, and c are real cell parameters and $\beta(ij)$ are anisotropic β 's.

Table 6. Atomic Coordinates for AgFRuF₆ at 298 K

	x	у	z	B_{eq} , ^{<i>a</i>} Å ²
Ag	0.07248(1)	0.21192(7)	0.22002(1)	1.440(5)
Ru	0.22722(1)	0.28784(7)	-0.06154(1)	1.297(6)
F1	0.0755(3)	0.4622(5)	-0.1900(2)	1.99(5)
F2	0.1559(3)	-0.0026(5)	-0.1487(2)	2.06(5)
F3	0.0544(3)	0.2482(6)	0.0034(2)	2.30(5)
F4	0.3904(3)	0.3208(6)	-0.1335(2)	2.53(6)
F5	0.2867(3)	0.5730(6)	0.0181(2)	2.70(6)
F6	0.3696(3)	0.1148(7)	0.0581(2)	2.81(6)
F7	0.2124(3)	-0.0913(5)	0.2374(2)	2.30(5)

^a $B_{eq} = (4/3)[a^2\beta(1,1) + b^2\beta(2,2) + c^2\beta(3,3) + ab(\cos \gamma)\beta(1,2) + ac(\cos \beta)\beta(1,3) + bc(\cos \alpha)\beta(2,3)]$ where a, b, and c are real cell parameters and $\beta(i,j)$ are anisotropic β 's.

(Ozark-Mahoning) were checked by IR spectroscopy to ensure absence of major impurities, then used as supplied. SbF₅ (Ozark-Mahoning) was distilled from its cylinder into a reservoir FEP tube. AgBF₄ was prepared as previously described.⁸ AgF₂ was prepared by the fluorination of AgF in AHF at room temperature.

 $AgMF_6$ (M = P, As, Sb, Bi, Ru, Ir) Synthesis. AgF and MFs were combined in AHF in a T-shaped FEP reactor at room temperature.

Table 7.	Crystallographic	Data	for	$Ag(BiF_6)_2$,	AgFRuF ₆ ,	and
AgFIrF ₆	-					

-			
chem formula	AgBi ₂ F ₁₂	AgRuF ₇	AgIrF ₇
fw	753.81	341.93	433.08
<i>a</i> ₀ , Å	5.218 (2)	8.3432(13)	7.628(2)
b _o , Å	5.579(1)	5.4933(8)	7.067(2)
$c_{\rm o}, {\rm \AA}$	8.934(2)	11.9286(22)	10.253(4)
α, deg	76.08(2)		
β , deg	88.93(2)	108.36(1)	
γ , deg	65.08(2)		
$V, Å^3$	228.0(1)	518.9(3)	552.7(3)
Ζ	1	4	4
space group	P1 (No. 2)	$P2_1/n$ (No. 14)	Pnma (No. 62)
temp, °C	25	25	25
λ(Μο Κα), Å	0.71073	0.71073	0.71073
$\varrho_{\rm calc}, {\rm g} \cdot {\rm cm}^{-3}$	5.49	4.38	5.23
μ , cm ⁻¹	406.6	66.7	275.5
Rª	0.055	0.027	0.026
R_{w}^{b}	0.067	0.028	0.030
$^{a}R = \sum (F_{o} -$	$ F_{\rm c})/\sum(F_{\rm o}).$	${}^{b}R_{w} = \{\sum w(F_{o} -$	$ F_{\rm c} ^{2}/\Sigma(F_{\rm o}^{2})\}^{1/2}$.

In the cases M = Ru or Ir, an excess of AgF was taken, the remaining reagent (in AHF solution) being easily decanted from the insoluble silver salt product. In all other instances, excess pentafluoride reagent was supplied (remaining PF₅, AsF₅, and SbF₅ were removed under vacuum, and BiF₅ which is highly soluble in AHF, was effectively removed by decantation of its AHF solution from the insoluble silver salt product). Purity of the product was checked by X-ray powder diffraction photography against unit cell descriptions previously given.^{17,18}

AgFMF₆ (M = As, Sb, Bi, Ru, Ir) Synthesis. In a T-shaped FEP reactor, approximately 2-4 mL of AHF was condensed onto AgMF₆ (200 to 500 mg). All of these solids have very low solubility in the AHF. The reactor was pressurized to 2 atm with F₂ and agitated continuously. As the F₂ was consumed in reaction, the white (M = As, Sb, Bi) or orange (M = Ru, Ir) reagent was replaced by a blue (M = As, Sb, Bi) or black (M = Ru, Ir) solid. Once the reaction mixture had ceased to take up F₂, either the AHF was decanted into the other arm of the reactor and removed immediately, or the product was first purified of AgF₂ as described below. The product was dried under dynamic vacuum for several hours.

Removing AgF₂ from AgFMF₆ (M = Bi, Ru, Ir). Because AgF₂ is ferromagnetic with a Curie temperature of 163 K,¹⁹ it was necessary,

⁽¹⁷⁾ Kermitt, R. D. W.; Russell, D. R.; Sharp, D. W. A. J. Chem. Soc. 1963, 844, 4408.

⁽¹⁸⁾ The combination of AgF and BiF₅ gives a material whose X-ray powder pattern is very similar to that of AgSbF₆. Indexing the pattern gives tetragonal unit cell dimensions for AgBiF₆: $a_0 = 5.065$ Å, $c_0 = 9.548$ Å, V = 244.9 Å³, Z = 2.

for the purpose of magnetic measurements, to strictly ensure its absence from Ag(II) materials made by direct fluorination. When an AgFMF₆ salt was obtained, prior to removal of the F_2/AHF solution, the reactor was evacuated to the soda lime to ca. 800 Torr. Then it was pressurized to 2 atm with BF₃ and agitated for a few minutes. Trace amounts of AgF₂ were converted to AgFBF₄, which was subsequently dissolved in the BF₃-acidified solution. This solution was decanted, the AHF then back-distilled for one or two more decantations prior to evacuation of the reactor and vacuum-drying of the product.

Ag(BiF₆)₂ Synthesis. A T-shaped FEP reactor was loaded with AgF (141 mg, 1.11 mmol) in one arm and BiF₅ (748 mg, 2.46 mmol) in the other. About 3 mL of AHF was condensed onto the AgF, dissolving it completely at room temperature. The reactor was then pressurized to 2 atm with F₂, resulting in the immediate precipitation of AgF₂ from solution. With continuous agitation, fluorine uptake and AgF2 precipitation were complete within 20 min. Pressure in the reactor was reduced to 1000 Torr. Then the solid BiF5 was shaken into the AHF and AgF₂, immediately forming a turquoise solid. A small aliquot of AHF was distilled over from one arm to the other in order to wash the remaining BiF5 reagent into the reaction mixture. The mixture was agitated continuously for 15 h prior to decantation of the pale-blue AHF solution. A turquoise powder was obtained after 3 h of vacuum drying. X-ray powder photography revealed only the powder pattern (indexed by single-crystal based data) characateristic of Ag(BiF₆)₂ (835 mg, 99.7% yield).

AgRuF₆BiF₆ Synthesis. Ag(BiF₆)₂ (158 mg, 0.210 mmol) and LiRuF₆ (44 mg, 0.20 mmol) were put into the same tube of a T-shaped FEP reactor. AHF (\sim 1.5 mL) was condensed onto the solids and warmed to room temperature. This mixture was stirred for 40 min as an olive-green solid was formed in a colorless solution. The solution was decanted and the AHF then distilled back onto the olive-green solid, leaving behind a white solid (shown by X-ray powder diffraction

to be LiBiF₆). Three more decantations followed by distillations were performed prior to removal of the AHF under dynamic vacuum. Powder X-ray photography of the insoluble solid shows a pattern similar to that of $Ag(BiF_6)_2$. The yield of olive-green material (129 mg), based on $AgRuF_6BiF_6$, was 95%.

Crystal Preparation and Structure Determination. Crystals of Ag(BiF₆)₂ were grown by slow evaporation of AHF from a saturated solution. Crystals of AgFMF₆ (M = Ru, Ir) were obtained by slow fluorination of AgMF₆ solid beneath a 2 cm column of liquid AHF. Inside the DRILAB, single crystals were loaded into gradually tapered quartz capillaries which had been thoroughly dried under a vacuum of 10^{-7} Torr at ~ 700 °C for 24 h. Gentle tapping of the capillary was used to firmly fix the crystal into place. The open end of the capillary was temporarily sealed with Kel-F grease as it was removed from the DRILAB and heat-sealed in a microburner flame. Atomic positions are provided in Tables 4–6. Crystal data are given in Table 7.

Acknowledgment. This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract Number DE-AC-03-76SF00098. Additional support was provided by the U.S.-Slovene Joint Fund for Scientific and Technological Cooperation, in association with the National Science Foundation under Grant No. JF947. J.M. is grateful to the Alexander von Humboldt Foundation for a Feodor Lynen Fellowship, and we thank Dr. F. Hollander for the determination of the novel structure AgFRuF₆.

Supplementary Material Available: Text discussing the experimental details of the structure determinations and listings of crystal data and thermal parameters (7 pages). Ordering information is given on any current masthead page.

IC9410957

⁽¹⁹⁾ Gruner, E.; Klemm, W. Naturwissenschaften 1937, 25, 59. Charpin, P.; Dianoux, A. J.; Marquet-Ellis, H.; Nguyen-Nghi, C. R. Acad. Sci. Paris 1967, 264, 1108.